hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def 'a  'b == 'a'b

is mentioned by

Thm* all
Thm* (P:hnum  hbool. implies
Thm* (P:hnum  hbool. (and(P(0),all(n:hnum. implies(P(n),P(suc(n)))))
Thm* (P:hnum  hbool. ,all(n:hnum. P(n))))
[hinduction]
Thm* exists(rep:hnum  hind. type_definition(is_num_rep,rep))[hnum_ty_def]
Thm* all
Thm* (m:hind. equal
Thm* (m:hind. (is_num_rep(m)
Thm* (m:hind. ,all
Thm* (m:hind. ,(P:hind  hbool. implies
Thm* (m:hind. ,(P:hind  hbool. (and
Thm* (m:hind. ,(P:hind  hbool. ((P(zero_rep)
Thm* (m:hind. ,(P:hind  hbool. (,all(n:hind. implies(P(n),P(suc_rep(n)))))
Thm* (m:hind. ,(P:hind  hbool. ,P(m)))))
[his_num_rep_wd]
Thm* equal(suc_rep,select(f:hind  hind. and(one_one(f),not(onto(f)))))[hsuc_rep_def]
Thm* abs_num  (hind  hnum)[habs_num_wf]

In prior sections: hol bool

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol num Sections HOLlib Doc