hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def hnum == 

is mentioned by

Thm* all
Thm* (P:hnum  hbool. implies
Thm* (P:hnum  hbool. (and(P(0),all(n:hnum. implies(P(n),P(suc(n)))))
Thm* (P:hnum  hbool. ,all(n:hnum. P(n))))
[hinduction]
Thm* all(m:hnum. all(n:hnum. implies(equal(suc(m),suc(n)),equal(m,n))))[hinv_suc]
Thm* all(n:hnum. not(equal(suc(n),0)))[hnot_suc]
Thm* all(m:hnum. equal(suc(m),abs_num(suc_rep(rep_num(m)))))[hsuc_def]
Thm* equal(0,abs_num(zero_rep))[hzero_def]
Thm* and
Thm* (all(a:hnum. equal(abs_num(rep_num(a)),a))
Thm* ,all(r:hind. equal(is_num_rep(r),equal(rep_num(abs_num(r)),r))))
[hnum_iso_def]
Thm* exists(rep:hnum  hind. type_definition(is_num_rep,rep))[hnum_ty_def]
Thm* abs_num  (hind  hnum)[habs_num_wf]

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol num Sections HOLlib Doc