Definitions hol one Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
type_definitionDef type_definition('a;'b;P;rep)
Def == (x',x'':'brep(x') = rep(x'' 'a  x' = x'')
Def == & (x:'a(P(x))  (x':'bx = rep(x')))
Thm* 'a,'b:Type, P:('a), rep:('b'a). type_definition('a;'b;P;rep Prop
assertDef b == if b True else False fi
Thm* b:b  Prop
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolifthenelseassertapplyfunctionuniverseequalmemberprop
impliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol one Sections HOLlib Doc