hol prim rec Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def P & Q == PQ

is mentioned by

Thm* 'a:S, e:'af:('a'a).
Thm* (fn1:('a). fn1(0) = e & (n:fn1(n+1) = f(fn1(n),n)))
Thm* & (fn1,y:('a).
Thm* & (fn1(0) = e & (n:fn1(n+1) = f(fn1(n),n))
Thm* & (y(0) = e
Thm* & (& (n:y(n+1) = f(y(n),n))
Thm* & (
Thm* & (fn1 = y)
[num_axiom]
Thm* 'a:S, x:'af:('a'a).
Thm* prim_rec(x,f,0) = x & (m:. prim_rec(x,f,m+1) = f(prim_rec(x,f,m),m))
[prim_rec_thm]
Thm* 'a:S, x:'af:('a'a).
Thm* (n:. prim_rec_fun(x,f,0,n) = x)
Thm* & (m,n:. prim_rec_fun(x,f,m+1,n) = f(prim_rec_fun(x,f,m,pre(n)),n))
[prim_rec_eqn]
Thm* pre(0) = 0 & (m:. pre(m+1) = m)[pre_suc]
Thm* 'a:S, x:'af:('a'a).
Thm* simp_rec(x,f,0) = x & (m:. simp_rec(x,f,m+1) = f(simp_rec(x,f,m)))
[simp_rec_thm]
Thm* m:m<m+1 & m<m+1+1[less_suc_suc]
Thm* 'a:S, n:f:('a'a), x:'a.
Thm* (fun:('a). simp_rec_rel(fun,x,f,n))
Thm* 
Thm* simp_rec_fun(x,f,n,0) = x
Thm* & (m:m<n  simp_rec_fun(x,f,n,m+1) = f(simp_rec_fun(x,f,n,m)))
[simp_rec_fun_lemma]
Def simp_rec_rel
Def == fun:'ax:'af:'a'an:(fun(0) = x
Def == & (m:m<n  fun(m+1) = f(fun(m))))
[hsimp_rec_rel]

In prior sections: core int 1 bool 1 hol hol bool hol num fun 1

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol prim rec Sections HOLlib Doc