PrintForm
Definitions
Lemmas
hol
prim
rec
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
simp
rec
fun
lemma
'a
:S,
n
:
,
f
:(
'a
'a
),
x
:
'a
.
(
fun
:(
'a
). simp_rec_rel(
fun
,
x
,
f
,
n
))
simp_rec_fun(
x
,
f
,
n
,0) =
x
& (
m
:
.
m
<
n
simp_rec_fun(
x
,
f
,
n
,
m
+1) =
f
(simp_rec_fun(
x
,
f
,
n
,
m
)))
By:
RewriteOfThm Thm:
hsimp
rec
fun
lemma
(SimpsetC [`hol_to_nuprl`;`bequal`])
THEN
Try (Complete (Unfold `hnum` 0))
Generated subgoals:
None
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
PrintForm
Definitions
Lemmas
hol
prim
rec
Sections
HOLlib
Doc