PrintForm
Definitions
hol
prim
rec
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
hsimp
rec
fun
lemma
'a
:S.
all
(
n
:hnum. all
(
n
:hnum.
(
f
:
'a
'a
. all
(
n
:hnum. (
f
:
'a
'a
.
(
x
:
'a
. equal
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
.
(exists
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
. (
(
fun
:hnum
'a
. simp_rec_rel(
fun
,
x
,
f
,
n
))
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
.
,and
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
. ,
(equal(simp_rec_fun(
x
,
f
,
n
,0),
x
)
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
. ,
,all
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
. ,,
(
m
:hnum. implies
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
. ,,(
m
:hnum.
(lt(
m
,
n
)
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
. ,,(
m
:hnum.
,equal
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
. ,,(
m
:hnum. ,
(simp_rec_fun(
x
,
f
,
n
,suc(
m
))
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
. ,,(
m
:hnum. ,
,
f
(
n
:hnum. (
f
:
'a
'a
. (
x
:
'a
. ,,(
m
:hnum. ,,
(simp_rec_fun(
x
,
f
,
n
,
m
))))))))))
By:
HOL "hsimp_rec_fun_lemma"
Generated subgoals:
None
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
PrintForm
Definitions
hol
prim
rec
Sections
HOLlib
Doc