| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
hexists | Def exists == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. exists (('a  hbool)  hbool) |
|
hsimp_rec_fun | Def simp_rec_fun
Def == x:'a. f:'a 'a. n: . @ fun:  'a. (simp_rec_rel(fun,x,f,n)) |
| | Thm* 'a:S. simp_rec_fun ('a  ('a  'a)  hnum  hnum  'a) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
hand | Def and == p: . q: . p q |
| | Thm* and (hbool  hbool  hbool) |
|
hbool | Def hbool ==  |
| | Thm* hbool S |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
himplies | Def implies == p: . q: . p  q |
| | Thm* implies (hbool  hbool  hbool) |
|
hlt | Def lt == m: . n: . m< n |
| | Thm* lt (hnum  hnum  hbool) |
|
hnum | Def hnum ==  |
| | Thm* hnum S |
|
hsimp_rec_rel | Def simp_rec_rel
Def == fun:  'a. x:'a. f:'a 'a. n: .  (fun(0) = x
Def == & ( m: . m<n  fun(m+1) = f(fun(m)))) |
| | Thm* 'a:S. simp_rec_rel ((hnum  'a)  'a  ('a  'a)  hnum  hbool) |
|
hsuc | Def suc == n: . n+1 |
| | Thm* suc (hnum  hnum) |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |