Definitions hol prim rec HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in hol prim rec

Defi>j[gt]core
DefTrue[true]core
DefP  Q[iff]core
DefProp[prop]core
Defhbool[hbool]hol min
DefS[stype]hol
Defsimp_rec_fun[hsimp_rec_fun]
Defnot[hnot]hol bool
Defsuc[hsuc]hol num
Defimplies[himplies]hol min
Defand[hand]hol bool
Defexists[hexists]hol bool
Deflt[hlt]
Defequal[hequal]hol min
Defall[hall]hol bool
Defselect[hselect]hol min
Defexists_unique[hexists_unique]hol bool
Def@x:'ap(x)[bchoose]hol min
Defb_exists_unique('a;x.p(x))[b_exists_unique]hol bool
Defx:TP(x)[bexists]hol
Defx:TP(x)[ball]hol
Defb[assert]bool 1
Defcond[hcond]hol bool
Defpre[hpre]
Defprim_rec[hprim_rec]
Defor[hor]hol bool
Defsimp_rec_rel[hsimp_rec_rel]
Defprim_rec_fun[hprim_rec_fun]
Defhnum[hnum]hol num
Defsimp_rec[hsimp_rec]
Def[nat]int 1
DefAB[le]core
DefA[not]core
DefP  Q[or]core
Defx:AB(x)[exists]core
Defncompose(f;n;x)[ncompose]hol num
Defpre(n)[pre]
Defi=j[eq_int]bool 1
Defbif(bbx.x(bx); by.y(by))[bif]hol
Defi<j[lt_int]bool 1
Defx:Tb(x)[tlambda]fun 1
DefP  Q[implies]core
Defx:AB(x)[all]core
DefP & Q[and]core
Defx = y[bequal]hol
DefP[prop_to_bool]hol
Def'a  'b[hfun]hol min
DefP  Q[rev_implies]core
Defpq[bimplies]bool 1
Defb[bnot]bool 1
Defpq[band]bool 1
Defp  q[bor]bool 1
Def@x:TP(x)[choose]hol
Defarb(T)[arb]hol

About:
productproductboolbfalsebtrueifthenelseassertintnatural_numberadd
subtractint_eqlessless_thantokenunion
decidesetlambdaapplyfunction
ycombuniverseequalaxiommemberpropimpliesandorfalsetrueall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol prim rec HOLlib Doc