| | Who Cites hexists unique? |
|
| hexists_unique | Def exists_unique == p:'a  . b_exists_unique('a;x.p(x)) |
| | | Thm* 'a:S. exists_unique (('a  hbool)  hbool) |
|
| b_exists_unique | Def b_exists_unique('a;x.p(x))
Def == ( x:'a. p(x)) ( x,y:'a. (p(x) p(y))  (x = y)) |
| | | Thm* 'a:Type, p:('a  ). b_exists_unique('a;x.p(x))  |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| band | Def p q == if p q else false fi |
| | | Thm* p,q: . (p q)  |
|
| bimplies | Def p  q ==  p  q |
| | | Thm* p,q: . p  q  |
|
| ball | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
| bexists | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
| prop_to_bool | Def  P == InjCase(lem(P) ; true ; false ) |
| | | Thm* P:Prop. ( P)  |
|
| bnot | Def  b == if b false else true fi |
| | | Thm* b: .  b  |
|
| bor | Def p  q == if p true else q fi |
| | | Thm* p,q: . (p  q)  |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |