Definitions hol bool HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in hol bool

DefP & Q[and]core
Defselect[hselect]hol min
Defexists[hexists]
Defall[hall]
Defexists_unique[hexists_unique]
Deftype_definition[htype_definition]
Defb_exists_unique('a;x.p(x))[b_exists_unique]
Defx:TP(x)[ball]hol
Defx:TP(x)[bexists]hol
Deftype_definition('a;'b;P;rep)[type_definition]hol
Def@x:'ap(x)[bchoose]hol min
Defb[assert]bool 1
DefP  Q[iff]core
Defhbool[hbool]hol min
Def'a  'b[hfun]hol min
Defequal[hequal]hol min
DefS[stype]hol
Deft[ht]
Defimplies[himplies]hol min
Defand[hand]
Defor[hor]
Deff[hf]
Defnot[hnot]
Deflet[hlet]
Defcond[hcond]
Defone_one[hone_one]
Defonto[honto]
Defhind[hind]hol min
Def[nat]int 1
DefAB[le]core
DefA[not]core
Defx = y[bequal]hol
Defpq[bimplies]bool 1
Defpq[band]bool 1
DefP  Q[implies]core
Defx:AB(x)[all]core
Defx:AB(x)[exists]core
Def[bool]bool 1
Defx:Tb(x)[tlambda]fun 1
Deftrue[btrue]bool 1
Defp  q[bor]bool 1
Deffalse[bfalse]bool 1
Defb[bnot]bool 1
Deflet x = a in b(x)[let]core
Defbif(bbx.x(bx); by.y(by))[bif]hol
Defone_one('a;'b;f)[one_one]
DefP[prop_to_bool]hol
Defonto('a;'b;f)[onto]
DefP  Q[rev_implies]core
Def@x:TP(x)[choose]hol
Defarb(T)[arb]hol

About:
productproductboolbfalsebtrueifthenelseassertunititintnatural_numberless_than
tokenunioninlinrdecideset
lambdaapplyfunctionuniverseequalaxiomimpliesandfalsetrueall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol bool HOLlib Doc