Selected Objects
def | b_exists_unique |
b_exists_unique('a;x.p(x))
== ( x:'a. p(x)) ( x,y:'a. (p(x) p(y))  (x = y)) |
THM | assert_of_b_exists_unique |
p:('a  ).
b_exists_unique('a;x.p(x))  ( x:'a. p(x)) & ( x,y:'a. p(x) & p(y)  x = y) |
def | one_one |
one_one('a;'b;f) == x,y:'a. f(x) = f(y) 'b  x = y |
def | onto |
onto('a;'b;f) == y:'b. x:'a. y = f(x) |
def | hexists |
exists == p:'a  .  x:'a. (p(x)) |
def | ht |
t == true |
def | hall |
all == p:'a  .  x:'a. (p(x)) |
def | hand |
and == p: . q: . p q |
def | hor |
or == p: . q: . p  q |
def | hf |
f == false |
def | hnot |
not == p: .  p |
def | hexists_unique |
exists_unique == p:'a  . b_exists_unique('a;x.p(x)) |
def | hlet |
let == f:'a 'b. e:'a. let x = e in f(x) |
def | hcond |
cond == b: . p:'a. q:'a. if b then p else q fi |
def | hone_one |
one_one == f:'a 'b.  one_one('a;'b;f) |
def | honto |
onto == f:'a 'b.  onto('a;'b;f) |
def | htype_definition |
type_definition == P:'a  . rep:'b 'a.  type_definition('a;'b;P;rep) |
THM | hexists_def |
'a:S. equal(exists, P:'a  hbool. P(select(P))) |
THM | htruth |
equal(t,equal(( x:hbool. x), x:hbool. x)) |
THM | hforall_def |
'a:S. equal(all, P:'a  hbool. equal(P, x:'a. t)) |
THM | hand_def |
equal
(and
, t1:hbool. t2:hbool. all( t:hbool. implies(implies(t1,implies(t2,t)),t))) |
THM | hor_def |
equal
(or
, t1:hbool. t2:hbool. all
, t1:hbool. t2:hbool. ( t:hbool. implies
, t1:hbool. t2:hbool. ( t:hbool. (implies(t1,t)
, t1:hbool. t2:hbool. ( t:hbool. ,implies(implies(t2,t),t)))) |
THM | hf_def |
equal(f,all( t:hbool. t)) |
THM | hnot_def |
equal(not, t:hbool. implies(t,f)) |
THM | hexists_unique_def |
'a:S.
equal
(exists_unique
, P:'a  hbool. and
, P:'a  hbool. (exists(P)
, P:'a  hbool. ,all( x:'a. all( y:'a. implies(and(P(x),P(y)),equal(x,y)))))) |
THM | hlet_def |
'b,'a:S. equal(let, f:'a  'b. x:'a. f(x)) |
THM | hcond_def |
'a:S.
equal
(cond
, t:hbool. t1:'a. t2:'a. select
, t:hbool. t1:'a. t2:'a. ( x:'a. and
, t:hbool. t1:'a. t2:'a. ( x:'a. (implies(equal(t,t),equal(x,t1))
, t:hbool. t1:'a. t2:'a. ( x:'a. ,implies(equal(t,f),equal(x,t2))))) |
THM | hone_one_def |
'b,'a:S.
all
( f:'a  'b. equal
( f:'a  'b. (one_one(f)
( f:'a  'b. ,all
( f:'a  'b. ,( x1:'a. all( x2:'a. implies(equal(f(x1),f(x2)),equal(x1,x2)))))) |
THM | honto_def |
'a,'b:S.
all( f:'a  'b. equal(onto(f),all( y:'b. exists( x:'a. equal(y,f(x)))))) |
THM | htype_definition_wd |
'b,'a:S.
all
( P:'a  hbool. all
( P:'a  hbool. ( rep:'b  'a. equal
( P:'a  hbool. ( rep:'b  'a. (type_definition(P,rep)
( P:'a  hbool. ( rep:'b  'a. ,and
( P:'a  hbool. ( rep:'b  'a. ,(all
( P:'a  hbool. ( rep:'b  'a. ,(( x':'b. all
( P:'a  hbool. ( rep:'b  'a. ,(( x':'b. ( x'':'b. implies
( P:'a  hbool. ( rep:'b  'a. ,(( x':'b. ( x'':'b. (equal(rep(x'),rep(x''))
( P:'a  hbool. ( rep:'b  'a. ,(( x':'b. ( x'':'b. ,equal(x',x''))))
( P:'a  hbool. ( rep:'b  'a. ,,all
( P:'a  hbool. ( rep:'b  'a. ,,( x:'a. equal
( P:'a  hbool. ( rep:'b  'a. ,,( x:'a. (P(x)
( P:'a  hbool. ( rep:'b  'a. ,,( x:'a. ,exists
( P:'a  hbool. ( rep:'b  'a. ,,( x:'a. ,( x':'b. equal(x,rep(x'))))))))) |
THM | hbool_cases_ax |
all( t:hbool. or(equal(t,t),equal(t,f))) |
THM | himp_antisym_ax |
all
( t1:hbool. all
( t1:hbool. ( t2:hbool. implies
( t1:hbool. ( t2:hbool. (implies(t1,t2)
( t1:hbool. ( t2:hbool. ,implies(implies(t2,t1),equal(t1,t2))))) |
THM | heta_ax |
'b,'a:S. all( t:'a  'b. equal(( x:'a. t(x)),t)) |
THM | hselect_ax |
'a:S. all( P:'a  hbool. all( x:'a. implies(P(x),P(select(P))))) |
THM | hinfinity_ax |
exists( f:hind  hind. and(one_one(f),not(onto(f)))) |
THM | band_simp_1 |
b: . (b true ) = b |
THM | bor_simp_1 |
b: . (b  true ) = true |
THM | bor_simp_2 |
b: . (b  false ) = b |
THM | bor_simp_3 |
b: . (true  b) = true |
THM | bor_simp_4 |
b: . (false  b) = b |
THM | band_simp_4 |
b: . (false  b) = false |
THM | band_simp_3 |
b: . (true  b) = b |
THM | band_simp_2 |
b: . (b false ) = false |
THM | bnot_simp_1 |
 true = false |
THM | bnot_simp_2 |
 false = true |
THM | bequal_refl_simp |
'a:S, x:'a. (x = x) = true |
THM | equal_btrue_to_assert |
p: . p = true  p |
THM | equal_btrue_to_assert_2 |
p: . true = p  p |
THM | equal_bfalse_to_assert |
p: . p = false  p |
THM | equal_bfalse_to_assert_2 |
p: . false = p  p |
THM | bexists_btrue |
'a:S. ( x:'a. true ) = true |
THM | bexists_bfalse |
'a:S. ( x:'a. false ) = false |
THM | ball_btrue |
'a:S. ( x:'a. true ) = true |
THM | ball_bfalse |
'a:S. ( x:'a. false ) = false |