WhoCites Definitions hol prim rec Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Who Cites hprim rec?
hprim_recDef prim_rec == x:'af:'a'am:. prim_rec_fun(x,f,m,pre(m))
Thm* 'a:S. prim_rec  ('a  ('a  hnum  'a hnum  'a)
hprim_rec_funDef prim_rec_fun
Def == x:'af:'a'a. simp_rec
Def == x:'af:'a'a((n:x)
Def == x:'af:'a'a,fun:'an:f(fun(pre(n)),n))
Thm* 'a:S. prim_rec_fun  ('a  ('a  hnum  'a hnum  hnum  'a)
preDef pre(n) == if n=0 then 0 else n-1 fi 
Thm* n:. pre(n 
hnumDef hnum == 
Thm* hnum  S
hsimp_recDef simp_rec == x:'af:'a'an:. ncompose(f;n;x)
Thm* 'a:S. simp_rec  ('a  ('a  'a hnum  'a)
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
tlambdaDef (x:Tb(x))(x) == b(x)
ncomposeDef ncompose(f;n;x) == if n=0 then x else f(ncompose(f;n-1;x)) fi   (recursive)
Thm* 'a:Type, n:x:'af:('a'a). ncompose(f;n;x 'a
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
bifDef bif(bbx.x(bx); by.y(by)) == if b x(*) else y(x.x) fi
Thm* A:Type, b:x:(bA), y:((b)A). bif(bbx.x(bx); by.y(by))  A
hfunDef 'a  'b == 'a'b
Thm* 'a,'b:S. ('a  'b S
leDef AB == B<A
Thm* i,j:. (ij Prop
notDef A == A  False
Thm* A:Prop. (A Prop

Syntax:prim_rec has structure: hprim_rec('a)

About:
boolbfalsebtrueifthenelseassertintnatural_numbersubtract
int_eqless_thansetlambdaapplyfunction
recursive_def_noticeuniverseaxiommemberpropimpliesfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions hol prim rec Sections HOLlib Doc