hol prim rec Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def pre(n) == if n=0 then 0 else n-1 fi 

is mentioned by

Thm* 'a:S, x:'af:('a'a).
Thm* (n:. prim_rec_fun(x,f,0,n) = x)
Thm* & (m,n:. prim_rec_fun(x,f,m+1,n) = f(prim_rec_fun(x,f,m,pre(n)),n))
[prim_rec_eqn]
Thm* pre(0) = 0 & (m:. pre(m+1) = m)[pre_suc]
Thm* n:n>0  pre(n) = n-1[pre_nuprl]
Def prim_rec == x:'af:'a'am:. prim_rec_fun(x,f,m,pre(m))[hprim_rec]
Def prim_rec_fun
Def == x:'af:'a'a. simp_rec
Def == x:'af:'a'a((n:x)
Def == x:'af:'a'a,fun:'an:f(fun(pre(n)),n))
[hprim_rec_fun]
Def pre == n:. pre(n)[hpre]

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol prim rec Sections HOLlib Doc