Definitions hol restr binder Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bexistsDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
assertDef b == if b True else False fi
Thm* b:b  Prop
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
prop_to_boolDef P == InjCase(lem(P) ; true; false)
Thm* P:Prop. (P 
res_existsDef res_exists('a;x.P(x);x.Q(x)) == x:'aP(x) & Q(x)
Thm* 'a:Type, P,Q:('aProp). res_exists('a;x.P(x);x.Q(x))  Prop
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}

About:
boolbfalsebtrueifthenelseassert
decidesetapplyfunction
universeequalmemberpropandfalsetrueall
exists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol restr binder Sections HOLlib Doc