| Some definitions of interest. |
|
bexists | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
band | Def p q == if p q else false fi |
| | Thm* p,q: . (p q)  |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
prop_to_bool | Def  P == InjCase(lem(P) ; true ; false ) |
| | Thm* P:Prop. ( P)  |
|
res_exists | Def res_exists('a;x.P(x);x.Q(x)) == x:'a. P(x) & Q(x) |
| | Thm* 'a:Type, P,Q:('a Prop). res_exists('a;x.P(x);x.Q(x)) Prop |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |