| Some definitions of interest. |
|
harb | Def arb == arb('a) |
| | Thm* 'a:S. arb 'a |
|
hres_abstract | Def res_abstract == P:'a  . f:'a 'b. res_lambda('a;'b;x.P(x);x.f(x)) |
| | Thm* 'a,'b:S. res_abstract (('a  hbool)  ('a  'b)  'a  'b) |
|
res_lambda | Def res_lambda('a;'b;x.P(x);x.f(x)) == x:'a. if P(x) then f(x) else arb('b) fi |
| | Thm* 'a,'b:S, P:('a  ), f:('a 'b). res_lambda('a;'b;x.P(x);x.f(x)) 'a 'b |
|
arb | Def arb(T) == InjCase(lem(T); x. x, "uu") |
| | Thm* T:S. arb(T) T |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hcond | Def cond == b: . p:'a. q:'a. if b then p else q fi |
| | Thm* 'a:S. cond (hbool  'a  'a  'a) |
|
bif | Def bif(b; bx.x(bx); by.y(by)) == if b x(*) else y( x.x) fi |
| | Thm* A:Type, b: , x:(b A), y:(( b) A). bif(b; bx.x(bx); by.y(by)) A |
|
hbool | Def hbool ==  |
| | Thm* hbool S |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |