hol
sum
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Rank
Theorem
Name
4
Thm*
'a
,
'b
:S.
Thm*
all
Thm*
(
e
:
'b
. equal
Thm* (
e
:
'b
.
(inr(
e
)
Thm* (
e
:
'b
.
,abs_sum(
b
:hbool.
x
:
'a
.
y
:
'b
. and(equal(
y
,
e
),not(
b
)))))
[hinr_def]
cites the following:
3
Thm*
'a
,
'b
:S.
Thm*
(
x
:
'a
+
'b
. abs_sum(rep_sum(
x
)) =
x
'a
+
'b
)
Thm*
& (
x
:(
'a
'b
). is_sum_rep(
x
) = ((rep_sum(abs_sum(
x
))) =
x
))
[sum_iso]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
hol
sum
Sections
HOLlib
Doc