hol
sum
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Rank
Theorem
Name
3
Thm*
'a
,
'b
:S,
u
,
v
:
'a
+
'b
. rep_sum(
u
) = rep_sum(
v
)
'a
'b
u
=
v
[hrep_sum_inj]
cites the following:
2
Thm*
'a
,
'b
:S.
Thm*
and
Thm*
(all(
a
:hsum(
'a
;
'b
). equal(abs_sum(rep_sum(
a
)),
a
))
Thm*
,all
Thm* ,
(
r
:hbool
'a
'b
hbool. equal
Thm* ,(
r
:hbool
'a
'b
hbool.
(is_sum_rep(
r
)
Thm* ,(
r
:hbool
'a
'b
hbool.
,equal(rep_sum(abs_sum(
r
)),
r
))))
[hsum_iso_def]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
hol
sum
Sections
HOLlib
Doc