hol
sum
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Theorem
Name
Thm*
'c
,
'b
,
'a
:S,
f
:(
'a
'c
),
g
:(
'b
'c
).
Thm*
(
h
:((
'a
+
'b
)
'c
).
Thm* (
h
o (
x
:
'a
. inl(
x
)) =
f
'a
'c
&
h
o (
x
:
'b
. inr(
x
)) =
g
'b
'c
)
Thm*
& (
h
,
y
:((
'a
+
'b
)
'c
).
Thm* & (
h
o (
x
:
'a
. inl(
x
)) =
f
'a
'c
&
h
o (
x
:
'b
. inr(
x
)) =
g
'b
'c
Thm* & (
&
y
o (
x
:
'a
. inl(
x
)) =
f
'a
'c
Thm* & (
&
y
o (
x
:
'b
. inr(
x
)) =
g
'b
'c
Thm* & (
Thm* & (
h
=
y
)
[sum_axiom]
cites the following:
Thm*
'c
,
'b
,
'a
:S.
Thm*
all
Thm*
(
f
:
'a
'c
. all
Thm* (
f
:
'a
'c
.
(
g
:
'b
'c
. exists_unique
Thm* (
f
:
'a
'c
. (
g
:
'b
'c
.
(
h
:hsum(
'a
;
'b
)
'c
. and
Thm* (
f
:
'a
'c
. (
g
:
'b
'c
. (
h
:hsum(
'a
;
'b
)
'c
.
(equal(o(
h
,inl),
f
)
Thm* (
f
:
'a
'c
. (
g
:
'b
'c
. (
h
:hsum(
'a
;
'b
)
'c
.
,equal(o(
h
,inr),
g
)))))
[hsum_axiom]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
hol
sum
Sections
HOLlib
Doc