hol sum Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
TheoremName
Thm* 'c,'b,'a:S, f:('a'c), g:('b'c).
Thm* (h:(('a+'b)'c). 
Thm* (h o (x:'a. inl(x)) = f  'a'c & h o (x:'b. inr(x)) = g  'b'c)
Thm* & (h,y:(('a+'b)'c).
Thm* & (h o (x:'a. inl(x)) = f  'a'c & h o (x:'b. inr(x)) = g  'b'c
Thm* & (y o (x:'a. inl(x)) = f  'a'c
Thm* & (y o (x:'b. inr(x)) = g  'b'c
Thm* & (
Thm* & (h = y)
[sum_axiom]
cites the following:
Thm* 'c,'b,'a:S.
Thm* all
Thm* (f:'a  'c. all
Thm* (f:'a  'c(g:'b  'c. exists_unique
Thm* (f:'a  'c. (g:'b  'c(h:hsum('a'b 'c. and
Thm* (f:'a  'c. (g:'b  'c. (h:hsum('a'b 'c(equal(o(h,inl),f)
Thm* (f:'a  'c. (g:'b  'c. (h:hsum('a'b 'c,equal(o(h,inr),g)))))
[hsum_axiom]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
hol sum Sections HOLlib Doc