hol
sum
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Rank
Theorem
Name
3
Thm*
'a
,
'b
:S.
Thm*
(
x
:
'a
+
'b
. abs_sum(rep_sum(
x
)) =
x
'a
+
'b
)
Thm*
& (
x
:(
'a
'b
). is_sum_rep(
x
) = ((rep_sum(abs_sum(
x
))) =
x
))
[sum_iso]
cites the following:
2
Thm*
'a
,
'b
:S.
Thm*
and
Thm*
(all(
a
:hsum(
'a
;
'b
). equal(abs_sum(rep_sum(
a
)),
a
))
Thm*
,all
Thm* ,
(
r
:hbool
'a
'b
hbool. equal
Thm* ,(
r
:hbool
'a
'b
hbool.
(is_sum_rep(
r
)
Thm* ,(
r
:hbool
'a
'b
hbool.
,equal(rep_sum(abs_sum(
r
)),
r
))))
[hsum_iso_def]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
hol
sum
Sections
HOLlib
Doc