Selected Objects
| COM | INT_DEFS_acom |
Integer related definitions |
| COM | ge_gt_wf_com |
These wf lemmas are used by EqCD during rewriting to ensure that subterms come out in right order. |
| def | lelt |
i j < k == i j & j<k |
| def | lele |
i j k == i j & j k |
| def | nat |
== {i: | 0 i } |
| def | nat_plus |
 == {i: | 0<i } |
| THM | nat_plus_properties |
i: . 0<i |
| def | int_nzero |
  == {i: | i 0 } |
| THM | int_nzero_properties |
i:  . i 0 |
| def | int_upper |
{i...} == {j: | i j } |
| THM | int_upper_properties |
i: , j:{i...}. i j |
| def | int_lower |
{...i} == {j: | j i } |
| THM | int_lower_properties |
i: , j:{...i}. j i |
| def | int_seg |
{i..j } == {k: | i k < j } |
| THM | int_seg_properties |
i,j: , y:{i..j }. i y < j |
| THM | decidable__equal_int_seg |
i,j: , x,y:{i..j }. Dec(x = y) |
| def | int_iseg |
{i...j} == {k: | i k & k j } |
| THM | int_iseg_properties |
i,j: , y:{i...j}. i y & y j |
| THM | int_lt_to_int_upper |
i: , A:({i+1...} Prop). ( j: . i<j  A(j))  ( j:{i+1...}. A(j)) |
| THM | int_le_to_int_upper |
i: , A:({i...} Prop). ( j: . i j  A(j))  ( j:{i...}. A(j)) |
| COM | INT_INCLUSIONS_tcom |
Inclusion relations between integer subypes |
| COM | INDUCTION_tcom |
Induction over naturals
... |
| THM | nat_ind_a |
P:(  Prop). P(0)  ( i: . P(i-1)  P(i))  ( i: . P(i)) |
| THM | nat_ind_tp |
P:(  Prop). P(0)  ( i: . P(i-1)  P(i))  ( i: . P(i)) |
| THM | nat_ind |
P:(  Prop). P(0)  ( i: . P(i-1)  P(i))  ( j: . P(j)) |
| THM | comp_nat_ind_tp |
P:(  Prop). ( i: . ( j: . j<i  P(j))  P(i))  ( i: . P(i)) |
| THM | comp_nat_ind_a |
P:(  Prop). ( i: . ( j: . j<i  P(j))  P(i))  ( i: . P(i)) |
| THM | nat_well_founded |
WellFnd{i}( ;x,y.x<y) |
| COM | OLD_INDUCTION |
|
| THM | complete_nat_ind |
P:(  Prop). ( i: . ( j: i. P(j))  P(i))  ( i: . P(i)) |
| def | suptype |
S T == T S |
| THM | complete_nat_ind_with_y |
P:(  Prop). ( i: . ( j: i. P(j))  P(i))  ( i: . P(i)) |