| Some definitions of interest. |
|
rem_nrel | Def Rem(a;n;r) == q: . Div(a;n;q) & q n+r = a |
| | Thm* a: , n:![](FONT/nat.png) , r: . Rem(a;n;r) Prop |
|
div_nrel | Def Div(a;n;q) == n q a < n (q+1) |
| | Thm* a: , n:![](FONT/nat.png) , q: . Div(a;n;q) Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
nat_plus | Def ![](FONT/nat.png) == {i: | 0<i } |
| | Thm* ![](FONT/nat.png) Type |