is mentioned by
Thm* a:, n:. 0(a mod n) & (a mod n) < n | [mod_bounds] |
Thm* a:, n:. q:. Div(a;n;q) & (a n) = q | [div_elim] |
Thm* a:, n:{...-1}. 0(a rem n) & (a rem n) < -n | [rem_bounds_4] |
Thm* a:{...0}, n:{...-1}. 0(a rem n) & (a rem n) > n | [rem_bounds_3] |
Thm* a:{...0}, n:. 0(a rem n) & (a rem n) > -n | [rem_bounds_2] |
Thm* a:, n:. 0(a rem n) & (a rem n) < n | [rem_bounds_1] |
Thm* a,b,c:. aimin(b;c) ab & ac | [imin_ub] |
Thm* a,b,c:. imax(a;b)c ac & bc | [imax_lb] |
Thm* i:, n:. |i|n -ni & in | [absval_ubound] |
Thm* a,b:. ab < 0 a < 0 & b > 0 a > 0 & b < 0 | [neg_mul_arg_bounds] |
Thm* a,b:. ab > 0 a > 0 & b > 0 a < 0 & b < 0 | [pos_mul_arg_bounds] |
Thm* a,b:. ab = 0 a = 0 & b = 0 | [zero_ann_b] |
Def Rem(a;n;r) == q:. Div(a;n;q) & qn+r = a | [rem_nrel] |
In prior sections: core int 1 bool 1
Try larger context: StandardLIB