Origin Definitions Sections StandardLIB Doc

int_2
Nuprl Section: int_2
Selected Objects
THMlt_to_le_rwi,j:. i < j i+1j
THMle_to_lt_rwi,j:. ij i < j+1
THMadd_functionality_wrt_lei1,i2,j1,j2:. i1j1 i2j2 i1+i2j1+j2
THMadd_functionality_wrt_lti1,i2,j1,j2:. i1 < j1 i2j2 i1+i2 < j1+j2
THMadd_cancel_in_eqa,b,n:. a+n = b+n a = b
THMadd_cancel_in_lta,b,n:. a+n < b+n a < b
THMadd_cancel_in_lea,b,n:. a+nb+n ab
THMadd_mono_wrt_eqa,b,n:. a = b a+n = b+n
THMadd_mono_wrt_eq_rwa,b,n:. a = b a+n = b+n
THMadd_mono_wrt_lta,b,n:. a < b a+n < b+n
THMadd_mono_wrt_lt_rwa,b,n:. a < b a+n < b+n
THMadd_mono_wrt_lea,b,n:. ab a+nb+n
THMadd_mono_wrt_le_rwa,b,n:. ab a+nb+n
THMminus_functionality_wrt_lei,j:. ij -i-j
THMminus_mono_wrt_lti,j:. i > j -i < -j
THMsub_functionality_wrt_lei1,i2,j1,j2:. i1j1 i2j2 i1-i2j1-j2
THMzero_ann_aa,b:. a = 0 b = 0 ab = 0
THMzero_ann_ba,b:. ab = 0 a = 0 & b = 0
THMmul_preserves_lta,b:, n:. a < b na < nb
THMmul_preserves_lea,b:, n:. ab nanb
THMmul_cancel_in_eqa,b:, n:. na = nb a = b
THMmul_cancel_in_lta,b:, n:. na < nb a < b
THMmul_cancel_in_lea,b:, n:. nanb ab
COMmul_fun_commentThis is only for first quadrant. ...
THMmultiply_functionality_wrt_lei1,i2,j1,j2:. i1j1 i2j2 i1i2j1j2
THMint_entirea,b:. ab = 0 a = 0 b = 0
THMint_entire_aa,b:. a 0 b 0 ab 0
THMmul_bounds_1aa,b:. 0ab
THMmul_bounds_1ba,b:. 0 < ab
THMpos_mul_arg_boundsa,b:. ab > 0 a > 0 & b > 0 a < 0 & b < 0
THMneg_mul_arg_boundsa,b:. ab < 0 a < 0 & b > 0 a > 0 & b < 0
COMadd_nat_wf_comIt is a bad idea to make these usual wf lemmas since often one mixes integer funs and nat funs. ...
COMquasi_lin_comQUASI-LINEAR FUNCTIONS ======================
defabsval|i| == if 0i i else -i fi
THMabsval_posi:. |i| = i
THMabsval_negi:{...0}. |i| = -i
defpm_equali = j == i = j i = -j
THMabsval_zeroi:. |i| = 0 i = 0
THMabsval_uboundi:, n:. |i|n -ni & in
THMabsval_lboundi:, n:. |i| > n i < -n i > n
THMabsval_eqx,y:. |x| = |y| x = y
THMabsval_symi:. |i| = |-i|
THMabsval_elimP:(Prop). (x:. P(|x|)) (x:. P(x))
defimaximax(a;b) == if ab b else a fi
defiminimin(a;b) == if ab a else b fi
THMminus_imaxa,b:. -imax(a;b) = imin(-a;-b)
THMminus_imina,b:. -imin(a;b) = imax(-a;-b)
THMimax_lba,b,c:. imax(a;b)c ac & bc
THMimax_uba,b,c:. aimax(b;c) ab ac
THMimax_add_ra,b,c:. imax(a;b)+c = imax(a+c;b+c)
THMimax_assoca,b,c:. imax(a;imax(b;c)) = imax(imax(a;b);c)
THMimax_coma,b:. imax(a;b) = imax(b;a)
THMimin_assoca,b,c:. imin(a;imin(b;c)) = imin(imin(a;b);c)
THMimin_coma,b:. imin(a;b) = imin(b;a)
THMimin_add_ra,b,c:. imin(a;b)+c = imin(a+c;b+c)
THMimin_lba,b,c:. imin(a;b)c ac bc
THMimin_uba,b,c:. aimin(b;c) ab & ac
defndiffa -- b == imax(a-b;0)
THMndiff_id_ra:. (a -- 0) = a
THMndiff_ann_la:. (0 -- a) = 0
THMndiff_inva:, b:. ((a+b) -- b) = a
THMndiff_ndiffa,b:, c:. ((a -- b) -- c) = (a -- (b+c))
THMndiff_ndiff_eq_imina,b:. (a -- (a -- b)) = imin(a;b)
THMndiff_add_eq_imaxa,b:. (a -- b)+b = imax(a;b)
THMndiff_zeroa,b:. (a -- b) = 0 ab
COMdiv_rem_comDIVISION AND REMAINDER FUNCTIONS ...
THMdiv_rem_suma:, n:. a = (a n)n+(a rem n)
THMrem_to_diva:, n:. (a rem n) = a-(a n)n
COMquadrants_comQuadrants for a rem b and a b are numbered as follows: ...
THMrem_bounds_1a:, n:. 0(a rem n) & (a rem n) < n
THMrem_bounds_2a:{...0}, n:. 0(a rem n) & (a rem n) > -n
THMrem_bounds_3a:{...0}, n:{...-1}. 0(a rem n) & (a rem n) > n
THMrem_bounds_4a:, n:{...-1}. 0(a rem n) & (a rem n) < -n
THMdiv_2_to_1a:{...0}, b:. (a b) = -((-a) b)
THMdiv_3_to_1a:{...0}, b:{...-1}. (a b) = ((-a) (-b))
THMdiv_4_to_1a:, b:{...-1}. (a b) = -(a (-b))
THMrem_2_to_1a:{...0}, n:. (a rem n) = -((-a) rem n)
THMrem_3_to_1a:{...0}, n:{...-1}. (a rem n) = -((-a) rem -n)
THMrem_4_to_1a:, n:{...-1}. (a rem n) = (a rem -n)
THMrem_syma:, b:. (a rem -b) = (a rem b)
THMrem_antisyma:, b:. ((-a) rem b) = -(a rem b)
THMrem_bounds_za:, b:. |a rem b| < |b|
THMrem_sym_1a:, n:. -(a rem n) = ((-a) rem n)
THMrem_sym_1aa:, n:. (a rem n) = -((-a) rem n)
THMrem_sym_2a:, n:. (a rem n) = (a rem -n)
THMrem_mag_bounda:, n:. |a rem n| < |n|
THMdiv_bounds_1a:, n:. 0(a n)
defdiv_nrelDiv(a;n;q) == nq a < n(q+1)
THMdiv_fun_sat_div_nrela:, n:. Div(a;n;a n)
THMdiv_elima:, n:. q:. Div(a;n;q) & (a n) = q
THMdiv_uniquea:, n:, p,q:. Div(a;n;p) Div(a;n;q) p = q
THMdiv_lbound_1a:, n:, k:. k(a n) kna
defrem_nrelRem(a;n;r) == q:. Div(a;n;q) & qn+r = a
THMrem_fun_sat_rem_nrela:, n:. Rem(a;n;a rem n)
THMdiv_base_casea:, n:. a < n (a n) = 0
THMdiv_rec_casea:, n:. an (a n) = ((a-n) n)+1
THMrem_base_casea:, n:. a < n (a rem n) = a
THMrem_gen_base_casea:, n:. |a| < |n| (a rem n) = a
THMrem_rec_casea:, n:. an (a rem n) = ((a-n) rem n)
THMrem_invarianta,b:, n:. ((a+bn) rem n) = (a rem n)
THMrem_additioni,j:, n:. (((i rem n)+(j rem n)) rem n) = ((i+j) rem n)
THMrem_rem_to_rema:, n:. ((a rem n) rem n) = (a rem n)
THMrem_base_case_za:, b:. |a| < |b| (a rem b) = a
THMrem_eq_argsa:. (a rem a) = 0
THMrem_eq_args_za:, b:. |a| = |b| (a rem b) = 0
defmodulusa mod n == if 0aa rem n ;((-a) rem n)=00 else n-((-a) rem n) fi
defdiv_floora n == if 0aa n ;((-a) rem n)=0-((-a) n) else -((-a) n)+-1 fi
THMmod_boundsa:, n:. 0(a mod n) & (a mod n) < n
THMdiv_floor_mod_suma:, n:. a = (a n)n+(a mod n)
THMint_mag_well_foundedWellFnd{i}(;x,y.|x| < |y|)
THMint_upper_well_foundedn:. WellFnd{i}({n...};x,y.x < y)
THMint_upper_indi:, E:({i...}Prop). E(i) (k:{i+1...}. E(k-1) E(k)) (k:{i...}. E(k))
THMint_lower_well_foundedn:. WellFnd{i}({...n};x,y.x > y)
THMint_lower_indi:, E:({...i}Prop). E(i) (k:{...i-1}. E(k+1) E(k)) (k:{...i}. E(k))
THMint_seg_well_founded_upi:, j:{i...}. WellFnd{u}({i..j};x,y.x < y)
THMint_seg_indi:, j:{i+1...}, E:({i..j}Prop). E(i) (k:{(i+1)..j}. E(k-1) E(k)) (k:{i..j}. E(k))
THMint_seg_well_founded_downi:, j:{i...}. WellFnd{u}({i..j};x,y.x > y)
THMdecidable__ex_int_segi,j:, F:({i..j}Prop). (k:{i..j}. Dec(F(k))) Dec(k:{i..j}. F(k))
THMdecidable__all_int_segi,j:, F:({i..j}Prop). (k:{i..j}. Dec(F(k))) Dec(k:{i..j}. F(k))

Origin Definitions Sections StandardLIB Doc