int 2 Sections StandardLIB Doc

Def == {i:| 0i }

is mentioned by

Thm* a:, n:. (a mod n) [modulus_wf]
Thm* a:, n:. ((a rem n) rem n) = (a rem n)[rem_rem_to_rem]
Thm* i,j:, n:. (((i rem n)+(j rem n)) rem n) = ((i+j) rem n)[rem_addition]
Thm* a,b:, n:. ((a+bn) rem n) = (a rem n)[rem_invariant]
Thm* a:, n:. an (a rem n) = ((a-n) rem n)[rem_rec_case]
Thm* a:, n:. a < n (a rem n) = a[rem_base_case]
Thm* a:, n:. an (a n) = ((a-n) n)+1[div_rec_case]
Thm* a:, n:. a < n (a n) = 0[div_base_case]
Thm* a:, n:. Rem(a;n;a rem n)[rem_fun_sat_rem_nrel]
Thm* a:, n:, k:. k(a n) kna[div_lbound_1]
Thm* a:, n:, p,q:. Div(a;n;p) Div(a;n;q) p = q[div_unique]
Thm* a:, n:. q:. Div(a;n;q) & (a n) = q[div_elim]
Thm* a:, n:. Div(a;n;a n)[div_fun_sat_div_nrel]
Thm* a:, n:. (a n) [divide_wf]
Thm* a:, n:. 0(a n)[div_bounds_1]
Thm* a:, n:. (a rem n) [remainder_wf]
Thm* a:, n:{...-1}. (a rem n) = (a rem -n)[rem_4_to_1]
Thm* a:, b:{...-1}. (a b) = -(a (-b))[div_4_to_1]
Thm* a:, n:{...-1}. 0(a rem n) & (a rem n) < -n[rem_bounds_4]
Thm* a:, n:. 0(a rem n) & (a rem n) < n[rem_bounds_1]
Thm* a,b:. (a -- (a -- b)) = imin(a;b)[ndiff_ndiff_eq_imin]
Thm* a,b:, c:. ((a -- b) -- c) = (a -- (b+c))[ndiff_ndiff]
Thm* a:, b:. ((a+b) -- b) = a[ndiff_inv]
Thm* a:. (0 -- a) = 0[ndiff_ann_l]
Thm* a:. (a -- 0) = a[ndiff_id_r]
Thm* P:(Prop). (x:. P(|x|)) (x:. P(x))[absval_elim]
Thm* i:, n:. |i| > n i < -n i > n[absval_lbound]
Thm* i:, n:. |i|n -ni & in[absval_ubound]
Thm* i:. |i| = i[absval_pos]
Thm* x:. |x| [absval_wf]
Thm* i,j:. ij [multiply_nat_wf]
Thm* a,b:. 0ab[mul_bounds_1a]
Thm* i1,i2,j1,j2:. i1j1 i2j2 i1i2j1j2[multiply_functionality_wrt_le]
Thm* a,b:, n:. ab nanb[mul_preserves_le]
Def Rem(a;n;r) == q:. Div(a;n;q) & qn+r = a[rem_nrel]

In prior sections: int 1 bool 1

Try larger context: StandardLIB

int 2 Sections StandardLIB Doc