| Who Cites rem nrel? |
|
rem_nrel |
Def Rem(a;n;r) == q: . Div(a;n;q) & q n+r = a |
| | Thm* a: , n: , r: . Rem(a;n;r) Prop |
|
div_nrel |
Def Div(a;n;q) == n q a < n (q+1) |
| | Thm* a: , n: , q: . Div(a;n;q) Prop |
|
nat |
Def == {i: | 0 i } |
| | Thm* Type |
|
nat_plus |
Def  == {i: | 0 < i } |
| | Thm*  Type |
|
lelt |
Def i j < k == i j & j < k |
|
le |
Def A B == B < A |
| | Thm* i,j: . i j Prop |
|
not |
Def A == A  False |
| | Thm* A:Prop. ( A) Prop |