| Who Cites rem nrel? | |
| rem_nrel | Def Rem(a;n;r) ==  q:  . Div(a;n;q)  &  q  n+r = a | 
| Thm*  a:  , n:   , r:  . Rem(a;n;r)  Prop | |
| div_nrel | Def Div(a;n;q) == n  q  a  <  n  (q+1) | 
| Thm*  a:  , n:   , q:  . Div(a;n;q)  Prop | |
| nat | Def  == {i:  | 0  i } | 
| Thm*    Type | |
| nat_plus | Def   == {i:  | 0 < i } | 
| Thm*     Type | |
| lelt | Def i  j  <  k == i  j  &  j < k | 
| le | Def A  B ==  B < A | 
| Thm*  i,j:  . i  j  Prop | |
| not | Def  A == A   False | 
| Thm*  A:Prop. (  A)  Prop | 
About:
|  |  |  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  |