Rank | Theorem | Name |
4 |
Thm* a:{...0}, b:{...-1}. (a b) = ((-a) (-b)) | [div_3_to_1] |
cites |
0 |
Thm* a:{...0}, n:{...-1}. 0(a rem n) & (a rem n) > n | [rem_bounds_3] |
0 |
Thm* a:, n:. 0(a rem n) & (a rem n) < n | [rem_bounds_1] |
0 |
Thm* a:, n:. a = (a n)n+(a rem n) | [div_rem_sum] |
1 |
Thm* a,b,n:. a = b a+n = b+n | [add_mono_wrt_eq] |
3 |
Thm* a,b,n:. a < b a+n < b+n | [add_mono_wrt_lt] |
2 |
Thm* a,b,n:. ab a+nb+n | [add_mono_wrt_le] |
0 | Thm* i,j,k:. i < j jk i < k | [lt_transitivity_1] |
2 |
Thm* a,b:, n:. na < nb a < b | [mul_cancel_in_lt] |
0 | Thm* i,j:. i > j -i < -j | [minus_functionality_wrt_lt] |