| Rank | Theorem | Name | 
| 4 | Thm*  a:  , b:{...-1}. (a  b) = -(a  (-b)) | [div_4_to_1] | 
| cites | 
| 0 | Thm*  a:  , n:{...-1}. 0  (a rem n)  &  (a rem n) < -n | [rem_bounds_4] | 
| 0 | Thm*  a:  , n:   . 0  (a rem n)  &  (a rem n) < n | [rem_bounds_1] | 
| 0 | Thm*  a:  , n:    . a = (a  n)  n+(a rem n) | [div_rem_sum] | 
| 1 | Thm*  a,b,n:  . a = b   a+n = b+n | [add_mono_wrt_eq] | 
| 3 | Thm*  a,b,n:  . a < b   a+n < b+n | [add_mono_wrt_lt] | 
| 2 | Thm*  a,b,n:  . a  b   a+n  b+n | [add_mono_wrt_le] | 
| 0 | Thm*  i,j,k:  . i  j   j < k   i < k | [lt_transitivity_2] | 
| 2 | Thm*  a,b:  , n:   . n  a < n  b   a < b | [mul_cancel_in_lt] | 
| 0 | Thm*  i,j:  . i > j   -i < -j | [minus_functionality_wrt_lt] |