Rank | Theorem | Name |
7 | Thm* a:, n:, k:. k(a n) kna | [div_lbound_1] |
cites | ||
6 | Thm* a:, n:. q:. Div(a;n;q) & (a n) = q | [div_elim] |
1 | Thm* a,b:, n:. ab nanb | [mul_preserves_le] |
0 | Thm* i,j,k:. ij j < k i < k | [lt_transitivity_2] |
0 | Thm* a,b:. ab = ba | [mul_com] |
2 | Thm* a,b:, n:. na < nb a < b | [mul_cancel_in_lt] |