Rank | Theorem | Name |
7 | Thm* a:, n:. an (a n) = ((a-n) n)+1 | [div_rec_case] |
cites | ||
6 | Thm* a:, n:. q:. Div(a;n;q) & (a n) = q | [div_elim] |
3 | Thm* a,b,n:. ab a+nb+n | [add_mono_wrt_le_rw] |
3 | Thm* a:, n:, p,q:. Div(a;n;p) Div(a;n;q) p = q | [div_unique] |
1 | Thm* a,b,n:. a+nb+n ab | [add_cancel_in_le] |
2 | Thm* a,b,n:. a+n < b+n a < b | [add_cancel_in_lt] |