| Some definitions of interest. |
|
int_lower | Def {...i} == {j: | j i } |
| | Thm* i: . {...i} Type |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
is_assoc_sep | Def is_assoc_sep(A; f) == is_assoc(A; x,y.(f(x,y))) |
| | Thm* f:(A A A). is_assoc_sep(A; f) Prop |
|
is_commutative_sep | Def is_commutative_sep(A; f) == is_commutative(A; x,z.(f(x,z))) |
| | Thm* f:(A A A). is_commutative_sep(A; f) Prop |
|
is_ident | Def is_ident(A; f; u) == x:A. f(u,x) = x & f(x,u) = x |
| | Thm* f:(A A A), u:A. is_ident(A; f; u) Prop |