Rank | Theorem | Name |
3 | Thm* ( i:{a..b}. f(i))+( i:{a..b}. g(i)) = ( i:{a..b}. f(i)+g(i)) | [add_via_intseg_addends] |
cites the following: | ||
2 | Thm* is_commutative_sep(A; f) Thm* Thm* is_ident(A; f; u) Thm* Thm* is_assoc_sep(A; f) Thm* Thm* (a,b:, e,g:({a..b}A). Thm* (f((Iter(f;u) i:{a..b}. e(i)),Iter(f;u) i:{a..b}. g(i)) Thm* (= Thm* ((Iter(f;u) i:{a..b}. f(e(i),g(i))) Thm* ( A) | [iter_via_intseg_comp_binop] |
0 | [is_commutative_sep_intadd] | |
0 | [intadd_ident_zero] | |
0 | [is_assoc_intadd] |