(5steps total) PrintForm Definitions Lemmas IteratedBinops Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Adding two summations pairwise.

At: add via intseg addends


  a,b:f,g:({a..b}).
  ( i:{a..b}. f(i))+( i:{a..b}. g(i)) = ( i:{a..b}. f(i)+g(i))


By: Inst: 
Thm*  f:(AAA), u:A.
Thm*  is_commutative_sep(Af)
Thm*  
Thm*  is_ident(Afu)
Thm*  
Thm*  is_assoc_sep(Af)
Thm*  
Thm*  (a,b:e,g:({a..b}A).
Thm*  (f((Iter(f;ui:{a..b}. e(i)),Iter(f;ui:{a..b}. g(i))
Thm*  (=
Thm*  ((Iter(f;ui:{a..b}. f(e(i),g(i)))
Thm*  ( A)
Using:[ | x,yx+y | 0]


Generated subgoals:

1   is_commutative_sep(; (x,yx+y))
1 step
2   is_ident(; (x,yx+y); 0)
1 step
3   is_assoc_sep(; (x,yx+y))
1 step
4 1. a,b:e,g:({a..b}).
1. (x,yx+y)(( i:{a..b}. e(i)), i:{a..b}. g(i))
1. =
1. ( i:{a..b}. (x,yx+y)(e(i),g(i)))
  a,b:f,g:({a..b}).
  ( i:{a..b}. f(i))+( i:{a..b}. g(i)) = ( i:{a..b}. f(i)+g(i))

1 step

About:
intnatural_numberaddlambdaapplyfunctionuniverseequalimpliesall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(5steps total) PrintForm Definitions Lemmas IteratedBinops Sections DiscrMathExt Doc