Rank | Theorem | Name |
2 | Thm* is_commutative_sep(A; f) Thm* Thm* is_ident(A; f; u) Thm* Thm* is_assoc_sep(A; f) Thm* Thm* (a,b:, e,g:({a..b}A). Thm* (f((Iter(f;u) i:{a..b}. e(i)),Iter(f;u) i:{a..b}. g(i)) Thm* (= Thm* ((Iter(f;u) i:{a..b}. f(e(i),g(i))) Thm* ( A) | [iter_via_intseg_comp_binop] |
cites the following: | ||
0 | Thm* (a:, b:{...a}. P(a,b)) Thm* Thm* (a:. (b:{...a}. P(a,b)) (b:{a...}. P(a,b))) (a,b:. P(a,b)) | [all_int_pairs_via_all_splits] |
0 | Thm* ba (Iter(f;u) i:{a..b}. e(i)) = u | [iter_via_intseg_null] |
0 | Thm* (b:{a...}. (c:{a..b}. P(a,c)) P(a,b)) (b:{a...}. P(a,b)) | [int_seg_upper_ind] |
1 | Thm* a<b Thm* Thm* (Iter(f;u) i:{a..b}. e(i)) = f((Iter(f;u) i:{a..b-1}. e(i)),e(b-1)) | [iter_via_intseg_split_last] |