Rank | Theorem | Name |
2 | Thm* is_ident(A; f; u) Thm* Thm* is_assoc_sep(A; f) Thm* Thm* (a,c,b:, e:({a..b}A). Thm* (ac Thm* ( Thm* (cb Thm* ( Thm* ((Iter(f;u) i:{a..b}. e(i)) Thm* (= Thm* (f((Iter(f;u) i:{a..c}. e(i)),Iter(f;u) i:{c..b}. e(i))) | [iter_via_intseg_split_mid] |
cites the following: | ||
0 | Thm* ba (Iter(f;u) i:{a..b}. e(i)) = u | [iter_via_intseg_null] |
1 | Thm* a<b Thm* Thm* (Iter(f;u) i:{a..b}. e(i)) = f((Iter(f;u) i:{a..b-1}. e(i)),e(b-1)) | [iter_via_intseg_split_last] |