| Rank | Theorem | Name |
| 3 | Thm* is_ident(A; f; u) Thm* Thm* is_assoc_sep(A; f) Thm* Thm* ( Thm* (a Thm* ( Thm* (c<b Thm* ( Thm* ((Iter(f;u) i:{a..b Thm* (= Thm* (f((Iter(f;u) i:{a..c | [iter_via_intseg_split_pluck] |
| cites the following: | ||
| 2 | Thm* is_ident(A; f; u) Thm* Thm* is_assoc_sep(A; f) Thm* Thm* ( Thm* (a Thm* ( Thm* (c Thm* ( Thm* ((Iter(f;u) i:{a..b Thm* (= Thm* (f((Iter(f;u) i:{a..c | [iter_via_intseg_split_mid] |
| 0 | Thm* is_ident(A; f; u) Thm* Thm* ( | [iter_via_intseg_singleton] |