(6steps total)
PrintForm
Definitions
Lemmas
IteratedBinops
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Splitting the range of iteration.
At:
iter
via
intseg
split
pluck
A
:Type,
f
:(
A
A
A
),
u
:
A
.
is_ident(
A
;
f
;
u
)
is_assoc_sep(
A
;
f
)
(
a
,
c
,
b
:
,
e
:({
a
..
b
}
A
).
(
a
c
(
(
c
<
b
(
(
(Iter(
f
;
u
)
i
:{
a
..
b
}.
e
(
i
))
(
=
(
f
((Iter(
f
;
u
)
i
:{
a
..
c
}.
e
(
i
)),
f
(
e
(
c
),Iter(
f
;
u
)
i
:{
c
+1..
b
}.
e
(
i
))))
By:
SimilarTo: Thm:
iter
via
intseg
split
mid
Generated subgoal:
1
1.
A
: Type
2.
f
:
A
A
A
3.
u
:
A
4. is_ident(
A
;
f
;
u
)
5. is_assoc_sep(
A
;
f
)
6.
a
:
7.
c
:
8.
b
:
9.
e
: {
a
..
b
}
A
10.
a
c
11.
c
<
b
12. (Iter(
f
;
u
)
i
:{
a
..
b
}.
e
(
i
))
12.
=
12.
f
((Iter(
f
;
u
)
i
:{
a
..
c
}.
e
(
i
)),Iter(
f
;
u
)
i
:{
c
..
b
}.
e
(
i
))
(Iter(
f
;
u
)
i
:{
a
..
b
}.
e
(
i
))
=
f
((Iter(
f
;
u
)
i
:{
a
..
c
}.
e
(
i
)),
f
(
e
(
c
),Iter(
f
;
u
)
i
:{
c
+1..
b
}.
e
(
i
)))
5
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(6steps total)
PrintForm
Definitions
Lemmas
IteratedBinops
Sections
DiscrMathExt
Doc