Rank | Theorem | Name |
4 | Thm* ac Thm* Thm* c<b Thm* Thm* ( i:{a..b}. e(i)) = ( i:{a..c}. e(i))e(c)( i:{c+1..b}. e(i)) | [mul_via_intseg_split_pluck] |
cites the following: | ||
3 | Thm* is_ident(A; f; u) Thm* Thm* is_assoc_sep(A; f) Thm* Thm* (a,c,b:, e:({a..b}A). Thm* (ac Thm* ( Thm* (c<b Thm* ( Thm* ((Iter(f;u) i:{a..b}. e(i)) Thm* (= Thm* (f((Iter(f;u) i:{a..c}. e(i)),f(e(c),Iter(f;u) i:{c+1..b}. e(i)))) | [iter_via_intseg_split_pluck] |