(5steps total)
PrintForm
Definitions
Lemmas
IteratedBinops
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Splitting the range of iteration.
At:
sum
via
intseg
split
mid
a
,
c
,
b
:
,
e
:({
a
..
b
}
).
a
c
c
b
(
i
:{
a
..
b
}.
e
(
i
)) = (
i
:{
a
..
c
}.
e
(
i
))+(
i
:{
c
..
b
}.
e
(
i
))
By:
Inst:
Thm*
f
:(
A
A
A
),
u
:
A
.
Thm*
is_ident(
A
;
f
;
u
)
Thm*
Thm*
is_assoc_sep(
A
;
f
)
Thm*
Thm*
(
a
,
c
,
b
:
,
e
:({
a
..
b
}
A
).
Thm* (
a
c
Thm* (
Thm* (
c
b
Thm* (
Thm* (
(Iter(
f
;
u
)
i
:{
a
..
b
}.
e
(
i
))
Thm* (
=
Thm* (
f
((Iter(
f
;
u
)
i
:{
a
..
c
}.
e
(
i
)),Iter(
f
;
u
)
i
:{
c
..
b
}.
e
(
i
)))
Using:[
|
x
,
y
.
x
+
y
| 0]
THEN
OnAllClauses Reduce
Generated subgoals:
1
is_ident(
; (
x
,
y
.
x
+
y
); 0)
2
steps
2
is_assoc_sep(
; (
x
,
y
.
x
+
y
))
2
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(5steps total)
PrintForm
Definitions
Lemmas
IteratedBinops
Sections
DiscrMathExt
Doc