Thms languages Sections AutomataTheory Doc

NOTE: This operator coercing a to a Prop is normally invisible since it is pretty obvious when it is needed.

assert Def b == if b True else False fi

Thm* b:. b Prop

lang_eq Def L = M == l:Alph*. L(l) M(l)

Thm* Alph:Type{i}, L,M:LangOver(Alph). L = M Prop{i'}

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

languages Def LangOver(Alph) == Alph*Prop

Thm* Alph:Type{i}. LangOver(Alph) Type{i'}

nat Def == {i:| 0i }

Thm* Type

null Def null(as) == Case of as; nil true ; a.as' false

Thm* T:Type, as:T*. null(as)

Thm* null(nil)

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberless_thanint
list_indbtruebfalseuniverselistboolnilset
natural_numberfunctionandapplyifthenelsetrueassert