Thms list 3 autom Sections AutomataTheory Doc

compose Def (f o g)(x) == f(g(x))

Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC

decidable Def Dec(P) == P P

Thm* A:Prop. Dec(A) Prop

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

mem_f Def mem_f(T;a;bs) == Case of bs; nil False ; b.bs' b = a T mem_f(T;a;bs') (recursive)

Thm* T:Type, a:T, bs:T*. mem_f(T;a;bs) Prop

nat Def == {i:| 0i }

Thm* Type

tidentity Def Id == Id

Thm* A:Type. Id AA

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

identity Def Id(x) == x

Thm* A:Type. Id AA

About:
!abstractionapplyalluniversememberfunctionimplies
falsepropless_thanintandsetnatural_number
recursive_def_noticelist_indorequallist