(26steps)
PrintForm
Definitions
Lemmas
mb
automata
3
Sections
GenAutomata
Doc
At:
rel
mng
lemma
1
2
1.
ds:
Collection(dec())
2.
da:
Collection(dec())
3.
de:
sig()
4.
rho:
Decl
5.
st1:
Collection(SimpleType)
6.
e1:
{1of([[de]] rho)}
7.
s:
{[[ds]] rho}
8.
a:
[[st1]] rho
9.
tr:
trace_env([[da]] rho)
10.
l:
Term List
11.
u:
Term
12.
v:
Term List
13.
(
i:
||v||. trace_consistent(rho;da;tr.proj;v[i]))
(
ls:SimpleType List, f:reduce(
s,m. [[s]] rho
m;Prop;ls). ||ls|| = ||v||
& (
i:
. i < ||v||
ls[i]
term_types(ds;st1;de;v[i]))
list_accum(x,t.x([[t]] e1 s a tr);f;v)
Prop)
14.
i:
(||v||+1). trace_consistent(rho;da;tr.proj;[u / v][i])
ls:SimpleType List, f:reduce(
s,m. [[s]] rho
m;Prop;ls). ||ls|| = ||v||+1
& (
i:
. i < ||v||+1
ls[i]
term_types(ds;st1;de;[u / v][i]))
list_accum(x,t.x([[t]] e1 s a tr);f([[u]] e1 s a tr);v)
Prop
By:
UnivCD THENA (Auto THEN (Reduce 0))
Generated subgoal:
1
15.
ls:
SimpleType List
16.
f:
reduce(
s,m. [[s]] rho
m;Prop;ls)
17.
||ls|| = ||v||+1
& (
i:
. i < ||v||+1
ls[i]
term_types(ds;st1;de;[u / v][i]))
list_accum(x,t.x([[t]] e1 s a tr);f([[u]] e1 s a tr);v)
Prop
About:
(26steps)
PrintForm
Definitions
Lemmas
mb
automata
3
Sections
GenAutomata
Doc