(50steps)
PrintForm
Definitions
Lemmas
mb
automata
4
Sections
GenAutomata
Doc
At:
rel
mng
2
iff
1
1
1
1
1
1.
x:
SimpleType
2.
ds:
Collection(dec())
3.
daa:
Collection(dec())
4.
da:
Collection(SimpleType)
5.
de:
sig()
6.
rho:
Decl
7.
e1:
{1of([[de]] rho)}
8.
e2:
l:Label
reduce(
s,m. [[s]] rho
m;Prop;de.rel(l))
9.
s1:
{[[ds]] rho}
10.
s2:
{[[ds]] rho}
11.
a:
[[da]] rho
12.
tr:
trace_env([[daa]] rho)
13.
l1:
Term List
14.
l2:
Term List
15.
||l1|| = ||l2||
16.
i:
||l1||. trace_consistent(rho;daa;tr.proj;l1[i])
17.
i:
||l2||. trace_consistent(rho;daa;tr.proj;l2[i])
18.
||l1|| = 2
19.
x
term_types(ds;da;de;l1[0])
20.
x
term_types(ds;da;de;l1[1])
21.
||l2|| = 2
22.
x
term_types(ds;da;de;l2[0])
23.
x
term_types(ds;da;de;l2[1])
24.
i:
. i < ||l1||
[[l1[i]]] e1 s1 a tr = [[l2[i]]] e1 s1 s2 a tr
[[rel_arg_typ(relname_eq(x);i;de)]] rho
list_accum(x,t.x([[t]] e1 s1 a tr);
x@0,y. x@0 = y
[[x]] rho;l1)
list_accum(x,t.x([[t]] e1 s1 s2 a tr);
x@0,y. x@0 = y
[[x]] rho;l2)
By:
Inst
Thm*
z:T List. ||z|| = 2
z = [z[0]; z[1]] [Term;l1]
THEN
HypSubstSq -1 0
THEN
Reduce 0
THEN
Thin -1
THEN
Inst
Thm*
z:T List. ||z|| = 2
z = [z[0]; z[1]] [Term;l2]
THEN
HypSubstSq -1 0
THEN
Reduce 0
THEN
Thin -1
Generated subgoal:
1
[[l1[0]]] e1 s1 a tr = [[l1[1]]] e1 s1 a tr
[[x]] rho
[[l2[0]]] e1 s1 s2 a tr = [[l2[1]]] e1 s1 s2 a tr
[[x]] rho
About:
(50steps)
PrintForm
Definitions
Lemmas
mb
automata
4
Sections
GenAutomata
Doc