(16steps)
PrintForm
Definitions
Lemmas
mb
automata
4
Sections
GenAutomata
Doc
At:
rel
mng
wf
1
1
1
1.
x:
SimpleType
2.
r1:
Term List
3.
ds:
Collection(dec())
4.
da:
Collection(dec())
5.
de:
sig()
6.
rho:
Decl
7.
st1:
Collection(SimpleType)
8.
e:
{[[de]] rho}
9.
s:
{[[ds]] rho}
10.
a:
[[st1]] rho
11.
tr:
trace_env([[da]] rho)
12.
trace_consistent_rel(rho;da;tr.proj; < inl(x),r1 > )
13.
l:
Term List
14.
r1 = l
15.
||l|| = 2
16.
x
term_types(ds;st1;de;l[0])
17.
x
term_types(ds;st1;de;l[1])
list_accum(x,t.x([[t]] 1of(e) s a tr);[[relname_eq(x)]] rho 2of(e) ;l)
Prop
By:
Using [`ls',[x; x];`da',da;`de',de] (BackThru
Thm*
ds,da:Collection(dec()), de:sig(), rho:Decl, st1:Collection(SimpleType), e1:{1of([[de]] rho)}, s:{[[ds]] rho}, a:[[st1]] rho, tr:trace_env([[da]] rho), l:Term List. (
i:
||l||. trace_consistent(rho;da;tr.proj;l[i]))
(
ls:SimpleType List, f:reduce(
s,m. [[s]] rho
m;Prop;ls). ||ls|| = ||l||
& (
i:
. i < ||l||
ls[i]
term_types(ds;st1;de;l[i]))
list_accum(x,t.x([[t]] e1 s a tr);f;l)
Prop))
THEN
Try Trivial
THEN
Try ((Unfold `relname_mng` 0) THEN (Reduce 0))
THEN
Try ((Reduce 0) THEN ExRepD THEN (CaseNat 0 `i') THEN (Reduce 0) THEN (CaseNat 1 `i') THEN (Reduce 0))
Generated subgoals:
1
1of(e)
{1of([[de]] rho)}
2
18.
i:
||l||
19.
i = 0
20.
i = 1
trace_consistent(rho;da;tr.proj;l[0])
3
18.
i:
||l||
19.
i = 0
20.
i = 1
trace_consistent(rho;da;tr.proj;l[1])
About:
(16steps)
PrintForm
Definitions
Lemmas
mb
automata
4
Sections
GenAutomata
Doc