Rank | Theorem | Name |
3 | Thm* f:(  (T List)), t,t': .
Thm* t<t'  concat(map(f;upto(t))) @ (f(t)) concat(map(f;upto(t'))) | [concat_map_upto] |
cites the following: |
0 | Thm* f,as':Top, A:Type, as:A List. map(f;as @ as') ~ (map(f;as) @ map(f;as')) | [map_append_sq] |
1 | Thm* ll1,ll2:(Top List) List. concat(ll1 @ ll2) ~ (concat(ll1) @ concat(ll2)) | [concat_append] |
0 | Thm* l:T List. (l @ nil) ~ l | [append_nil_sq] |
0 | Thm* l:Top List, ll:(Top List) List. concat([l / ll]) ~ (l @ concat(ll)) | [concat-cons] |
2 | Thm* ll1,ll2:(T List) List. ll1 ll2  concat(ll1) concat(ll2) | [concat_iseg] |
0 | Thm* f:(A B), L1,L2:A List. L1 L2  map(f;L1) map(f;L2) | [iseg_map] |
2 | Thm* i,j: . i j  upto(i) upto(j) | [upto_iseg] |