| Some definitions of interest. |
|
lconnects | Def lconnects(p;i;j)
Def == lpath(p)
Def == & (||p|| = 0  i = j Id)
Def == & ( ||p|| = 0  i = source(hd(p)) & j = destination(last(p))) |
| | Thm* p:IdLnk List, i,j:Id. lconnects(p;i;j) Prop |
|
lpath | Def lpath(p)
Def == i: (||p||-1).
Def == destination(p[i]) = source(p[(i+1)]) & p[(i+1)] = lnk-inv(p[i]) IdLnk |
| | Thm* p:IdLnk List. lpath(p) Prop |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
l_interval | Def l_interval(l;j;i) == mklist(i-j; x.l[(j+x)]) |
| | Thm* T:Type, l:T List, i: ||l||, j: (i+1). l_interval(l;j;i) T List |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
lsrc | Def source(l) == 1of(l) |
| | Thm* l:IdLnk. source(l) Id |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n<||l||  l[n] A |