| Some definitions of interest. |
|
w-action | Def Action(i) == action(w-action-dec(w.TA;w.M;i)) |
|
world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | Thm* World Type{i'} |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
w-a | Def a(i;t) == 1of(2of(2of(2of(2of(w)))))(i,t) |