Rank | Theorem | Name |
3 | Thm* the_w:World, e:E.
Thm* FairFifo  isrcv(kind(e))  ( t: time(e). match(lnk(kind(e));t;time(e))) | [w-match-exists] |
cites the following: |
1 | Thm* r: , L:Top List. ||nth_tl(r;L)|| = if r< ||L|| ||L||-r else 0 fi | [general_length_nth_tl] |
1 | Thm* m: , L:T List. m<||L||  (nth_tl(m;L) ~ [L[m] / nth_tl(1+m;L)]) | [nth_tl_decomp] |
2 | Thm* ll:(T List) List, n: ||concat(ll)||.
Thm* m: ||ll||.
Thm* ||concat(firstn(m;ll))|| n
Thm* & n-||concat(firstn(m;ll))||<||ll[m]||
Thm* & concat(ll)[n] = ll[m][(n-||concat(firstn(m;ll))||)] | [select_concat] |
0 | Thm* f:(A B), as:A List. ||map(f;as)|| = ||as||  | [map_length] |
2 | Thm* n,m: . firstn(n;upto(m)) ~ if n m upto(n) else upto(m) fi | [firstn_upto] |
1 | Thm* f:(Top Top), n: , l:Top List. firstn(n;map(f;l)) ~ map(f;firstn(n;l)) | [firstn_map] |
1 | Thm* f:(A B), as:A List, n: ||as||. map(f;as)[n] = f(as[n]) | [map_select] |
1 | Thm* n: . ||upto(n)|| ~ n | [length_upto] |
2 | Thm* m: , n: m. upto(m)[n] = n | [select_upto] |