Thm* A:Type, eq:EqDecider(A), f:a:A fp-> Top.
Thm* fpf-dom-list(f) {a:A| a dom(f) } List | [fpf-dom-list_wf] |
Thm* eq:EqDecider(A), x,y:A, v:Top. x dom(y : v)  x = y | [fpf-single-dom] |
Thm* eq:EqDecider(A), f,g:a:A fp-> Top, x:A.
Thm* x dom(f g)  x dom(f) x dom(g) | [fpf-join-dom2] |
Thm* B:(A Type), eq:EqDecider(A), f,g:a:A fp-> B(a), x:A.
Thm* x dom(f g)  x dom(f) x dom(g) | [fpf-join-dom] |
Def ma-sframe-compatible(A; B)
Def == kl:(Knd IdLnk), tg:Id.
Def == ( kl dom(1of(2of(2of(2of(2of(2of(A)))))))
Def == (
Def == ((tg map( p.1of(p);1of(2of(2of(2of(2of(2of(A))))))(kl)))
Def == (
Def == ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(A)))))))))
Def == (
Def == ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(B)))))))))
Def == (
Def == ( deq-member(KindDeq;1of(kl);1of(2of(2of(2of(2of(2of(2of(2of(
Def == ( deq-member(KindDeq;1of(kl);1of(B))))))))(<2of(kl),tg>)))
Def == & ( kl dom(1of(2of(2of(2of(2of(2of(B)))))))
Def == & (
Def == & ((tg map( p.1of(p);1of(2of(2of(2of(2of(2of(B))))))(kl)))
Def == & (
Def == & ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(B)))))))))
Def == & (
Def == & ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(A)))))))))
Def == & (
Def == & ( deq-member(KindDeq;1of(kl);1of(2of(2of(2of(2of(2of(2of(2of(
Def == & ( deq-member(KindDeq;1of(kl);1of(A))))))))(<2of(kl),tg>))) | [ma-sframe-compatible] |
Def ma-frame-compatible(A; B)
Def == kx:(Knd Id).
Def == ( kx dom(1of(2of(2of(2of(2of(A))))))
Def == (
Def == ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(A))))))))
Def == (
Def == ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(B))))))))
Def == (
Def == ( deq-member(KindDeq;1of(kx);1of(2of(2of(2of(2of(2of(2of(
Def == ( deq-member(KindDeq;1of(kx);1of(B)))))))(2of(kx))))
Def == & ( kx dom(1of(2of(2of(2of(2of(B))))))
Def == & (
Def == & ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(B))))))))
Def == & (
Def == & ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(A))))))))
Def == & (
Def == & ( deq-member(KindDeq;1of(kx);1of(2of(2of(2of(2of(2of(2of(
Def == & ( deq-member(KindDeq;1of(kx);1of(A)))))))(2of(kx)))) | [ma-frame-compatible] |
Def M.sframe(k sends <l,tg>)
Def == L != 1of(2of(2of(2of(2of(2of(2of(2of(
Def == L != 1of(M))))))))(<l,tg>) ==> deq-member(KindDeq;k;L) | [ma-sframe] |
Def M.frame(k affects x)
Def == L != 1of(2of(2of(2of(2of(2of(2of(M)))))))(x) ==> deq-member(KindDeq;k;L) | [ma-frame] |
Def a declared in M == locl(a) dom(1of(2of(M))) | [ma-decla] |
Def x dom(f). v=f(x)  P(x;v) == x:A. x dom(f)  P(x;f(x)) | [fpf-all] |
Def f || g == x:A. x dom(f) & x dom(g)  f(x) = g(x) B(x) | [fpf-compatible] |