Thm* A:Type, eq:EqDecider(A), f:a:A fp-> Top.
Thm* fpf-dom-list(f) {a:A| a dom(f) } List | [fpf-dom-list_wf] |
Thm* eq:EqDecider(A), B:Top, f:a:A fp-> Top. || f | [fpf-empty-compatible-left] |
Thm* eq:EqDecider(A), B:Top, f:a:A fp-> Top. f || | [fpf-empty-compatible-right] |
Thm* A:Type, B:(A Type), x:A, v:B(x). x : v x:A fp-> B(x) | [fpf-single_wf] |
Thm* eq:EqDecider(A), f:a:A fp-> Top, g:Top, x:A.
Thm* f g(x) ~ if x dom(f) f(x) else g(x) fi | [fpf-join-ap-sq] |
Thm* eq:EqDecider(A), f,g:x:A fp-> Top.
Thm* fpf-is-empty(f g) ~ (fpf-is-empty(f) fpf-is-empty(g)) | [fpf-join-is-empty] |
Thm* eq:EqDecider(A), f,g:a:A fp-> Top, x:A.
Thm* x dom(f g)  x dom(f) x dom(g) | [fpf-join-dom2] |
Thm* B:(A Type), eq:EqDecider(A), f,g:a:A fp-> B(a), x:A.
Thm* x dom(f g)  x dom(f) x dom(g) | [fpf-join-dom] |
Def MsgAForm
Def == x:Id fp-> Top x:Knd fp-> Type x:Id fp-> Top x:Id fp-> Top
Def == x:Knd Id fp-> Top x:Knd IdLnk fp-> Top x:Id fp-> Top x:IdLnk Id fp-> Top
Def == Top | [msg-form] |
Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top | [msga] |