Def ma-sframe-compatible(A; B)
Def == kl:(Knd IdLnk), tg:Id.
Def == ( kl dom(1of(2of(2of(2of(2of(2of(A)))))))
Def == (
Def == ((tg map( p.1of(p);1of(2of(2of(2of(2of(2of(A))))))(kl)))
Def == (
Def == ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(A)))))))))
Def == (
Def == ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(B)))))))))
Def == (
Def == ( deq-member(KindDeq;1of(kl);1of(2of(2of(2of(2of(2of(2of(2of(
Def == ( deq-member(KindDeq;1of(kl);1of(B))))))))(<2of(kl),tg>)))
Def == & ( kl dom(1of(2of(2of(2of(2of(2of(B)))))))
Def == & (
Def == & ((tg map( p.1of(p);1of(2of(2of(2of(2of(2of(B))))))(kl)))
Def == & (
Def == & ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(B)))))))))
Def == & (
Def == & ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(A)))))))))
Def == & (
Def == & ( deq-member(KindDeq;1of(kl);1of(2of(2of(2of(2of(2of(2of(2of(
Def == & ( deq-member(KindDeq;1of(kl);1of(A))))))))(<2of(kl),tg>))) | [ma-sframe-compatible] |
Def ma-frame-compatible(A; B)
Def == kx:(Knd Id).
Def == ( kx dom(1of(2of(2of(2of(2of(A))))))
Def == (
Def == ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(A))))))))
Def == (
Def == ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(B))))))))
Def == (
Def == ( deq-member(KindDeq;1of(kx);1of(2of(2of(2of(2of(2of(2of(
Def == ( deq-member(KindDeq;1of(kx);1of(B)))))))(2of(kx))))
Def == & ( kx dom(1of(2of(2of(2of(2of(B))))))
Def == & (
Def == & ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(B))))))))
Def == & (
Def == & ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(A))))))))
Def == & (
Def == & ( deq-member(KindDeq;1of(kx);1of(2of(2of(2of(2of(2of(2of(
Def == & ( deq-member(KindDeq;1of(kx);1of(A)))))))(2of(kx)))) | [ma-frame-compatible] |
Def Feasible(M)
Def == x dom(1of(M)). T=1of(M)(x)  T
Def == & k dom(1of(2of(M))). T=1of(2of(M))(k)  Dec(T)
Def == & a dom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a) 
Def == & s:State(1of(M)). Dec( v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == & kx dom(1of(2of(2of(2of(2of(M)))))).
Def == ef=1of(2of(2of(2of(2of(M)))))(kx)  M.frame(1of(kx) affects 2of(kx))
Def == & kl dom(1of(2of(2of(2of(2of(2of(M))))))).
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl)  tg:Id.
Def == & (tg map( p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>) | [ma-feasible] |
Def ma-single-effect1(x;A;y;B;k;T;f)
Def == ma-single-effect(x : A y : B; k : T; k; x; ( s,v. f(s(x),s(y),v))) | [ma-single-effect1] |
Def M1 || M2
Def == M1 ||decl M2
Def == & 1of(2of(2of(M1))) || 1of(2of(2of(M2)))
Def == & 1of(2of(2of(2of(M1)))) || 1of(2of(2of(2of(M2))))
Def == & 1of(2of(2of(2of(2of(M1))))) || 1of(2of(2of(2of(2of(M2)))))
Def == & 1of(2of(2of(2of(2of(2of(M1)))))) || 1of(2of(2of(2of(2of(2of(M2))))))
Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(2of(2of(2of(2of(2of(2of(
Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(M2)))))))
Def == & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & 1of(M1)))))))) || 1of(2of(2of(2of(2of(2of(2of(2of(M2)))))))) | [ma-compatible] |
Def M1 M2
Def == mk-ma(1of(M1) 1of(M2);
Def == mk-ma(1of(2of(M1)) 1of(2of(M2));
Def == mk-ma(1of(2of(2of(M1))) 1of(2of(2of(M2)));
Def == mk-ma(1of(2of(2of(2of(M1)))) 1of(2of(2of(2of(M2))));
Def == mk-ma(1of(2of(2of(2of(2of(M1))))) 1of(2of(2of(2of(2of(M2)))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1)))))) 1of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1)))))) 1of(M2))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1))))))) 1of(2of(2of(2of(2of(2of(2of(M2)))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1)))))))) 1of(2of(2of(2of(2of(2of(2of(2of(M2))))))))) | [ma-join] |
Def M1 ||decl M2 == 1of(M1) || 1of(M2) & 1of(2of(M1)) || 1of(2of(M2)) | [ma-compatible-decls] |
Def M1 M2
Def == 1of(M1) 1of(M2) & 1of(2of(M1)) 1of(2of(M2))
Def == & 1of(2of(2of(M1))) 1of(2of(2of(M2)))
Def == & & 1of(2of(2of(2of(M1)))) 1of(2of(2of(2of(M2))))
Def == & & 1of(2of(2of(2of(2of(M1))))) 1of(2of(2of(2of(2of(M2)))))
Def == & & 1of(2of(2of(2of(2of(2of(M1)))))) 1of(2of(2of(2of(2of(2of(M2))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) 1of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) 1of(M2)))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(M1)))))))) 1of(2of(2of(2of(2of(2of(2of(2of(M2)))))))) | [ma-sub] |
Def M.sframe(k sends <l,tg>)
Def == L != 1of(2of(2of(2of(2of(2of(2of(2of(
Def == L != 1of(M))))))))(<l,tg>) ==> deq-member(KindDeq;k;L) | [ma-sframe] |
Def M.frame(k affects x)
Def == L != 1of(2of(2of(2of(2of(2of(2of(M)))))))(x) ==> deq-member(KindDeq;k;L) | [ma-frame] |
Def M.ef(k,x,s,v,w)
Def == E != 1of(2of(2of(2of(2of(M)))))(<k,x>) ==> w = E(s,v) M.ds(x) | [ma-ef] |
Def M.pre(a,s,v) == P != 1of(2of(2of(2of(M))))(a) ==> P(s,v) | [ma-pre] |
Def unsolvable M.pre(a,s)
Def == P != 1of(2of(2of(2of(M))))(a) ==> v:M.da(locl(a)). P(s,v) | [ma-npre] |
Def M.init(x,v) == x0 != 1of(2of(2of(M)))(x) ==> v = x0 1of(M)(x)?Void | [ma-init] |
Def M.ds(x) == 1of(M)(x)?Top | [ma-ds] |
Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top | [msga] |
Def State(ds) == x:Id ds(x)?Top | [ma-state] |